The value of $\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha  + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta  + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma  + \delta } \right)}
\end{array}} \right|$ is 

  • A

    $\sin \alpha \sin \beta \sin \delta $

  • B

    $\cos \alpha \cos \beta \cos \delta $

  • C

    $1$

  • D

    $0$

Similar Questions

${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has

Let $a, b, c > 0$ and $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ then which of the following is not correct?

If $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; then the value of $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$is

For what value of $\lambda $, the system of equations $x + y + z = 6,x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ is inconsistent  $\lambda =$ ........

  • [AIEEE 2002]

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]